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Solution to Assignment 4

Supplementary Problems

1. Determine which of the following functions are convex/strictly convex:

(a) f1(x) = xp, x ∈ (0,∞) .

(b) f2(x) = xx , x ∈ (0,∞) .

(c) f3(x) = tanx , x ∈ (−π/2, π/2) .

(d) f4(x) = x log x, x ∈ (0,∞) .

(e) f5(x) = (1 +
√
x)−1, x ∈ (−1,∞).

Solution. (a) f ′′1 (x) = p(p − 1)xp−2 > 0 on (0,∞), so it is strictly convex when p > 1
or p < 0, convex at p = 0, 1, and strictly concave when p ∈ (0, 1). (A function is concave
(resp. strictly concave) if its negative is convex (resp. strictly convex).)

(b) f ′′2 (x) = xx(1 + log x)2 + xx−1 > 0, so it is strictly convex.

(c) f ′′3 (x) = 2 sec2 x tanx is positive on (0, π/2) but negative on (−π, 0), so it is not strictly
convex on (−π/2, π/2).

(d) f ′′4 (x) = 1/x > 0 on (0,∞), so it is strictly convex.

2. Let f and g be two convex functions defined on I. Show that the function h(x) =
max{f(x), g(x)} is convex. Is the function j(x) = min{f(x), g(x)} convex?

Solution. Let x, y ∈ I and λ ∈ n[0, 1], we have

f((1− λ)x+ λy) ≤ (1− λ)f(x) + λf(y) ≤ (1− λ)h(x) + λh(y),

and
g((1− λ)x+ λy) ≤ (1− λ)g(x) + λg(y) ≤ (1− λ)h(x) + λh(y),

and the result follows. The min function is in general not convex. For instance you take
f(x) = x2 and g(x) = (x − 1)2. Then j = min{f, g} is not convex. Plot the graphs to
convince yourself.

3. Give an example to show that the product of two strictly convex functions may not be
convex. How about the composite of two strictly convex functions?

Solution. Take f(x) = x3/2, g(x) = x−1 on (0, 1). Then

f ′′(x) =
3

2

1

2
x−1/2 > 0 , g′(x) = −x−2, g′′(x) = 2x−3 > 0

on (0, 1). Hence f, g are convex. Now (fg)(x) =
√
x on (0, 1) is not convex. (In fact, it is

strictly concave as (fg)′′(x) = −x−3/2/2 < 0 .)

If we consider the composition of two twice differentiable functions F (G(x)). We have

d2

dx2
F (G(x)) = F ′(G(x))G′′(x) + F ′′(G(x))G′(x)2 .

We see that it is convex provided F and G are both convex and F is increasing. In general,
only the convexity of both functions is not sufficient. For instance, consider the function
h(x) = e−x

2
which is the composition of two strictly convex functions G(x) = x2 and

F (y) = e−y but

h′′(x) = 2(2x2 − 1)e−x
2
, x ∈ (−∞,∞) ,

and is negative, say, at x = 0.
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4. Let f be a convex function on (a, b) whose inverse exists. Is the inverse function convex?

No. For instance, f(x) = x2 is strictly convex and strictly increasing on (0,∞). Its inverse
exists and is equal to g(x) =

√
x, x ∈ (0,∞). However, g is strictly concave. In general,

from the relation

f−1(y) =
1

f ′(x)
, y = f(x) ,

we see that the slope of the inverse function is decreasing whenever the slope of f is increas-
ing. Therefore, the inverse function of a differentiable convex function with non-vanishing
derivative is strictly concave. In general, it can be shown that the inverse of a convex
function is concave.

5. Let f be a continuous function on (a, b) satisfying

f

(
x+ y

2

)
≤ 1

2

(
f(x) + f(y)

)
, ∀x, y ∈ (a, b).

Show that f is convex. Suggestion: Show

f

(
x1 + · · ·+ xn

n

)
≤ f(x1) + · · ·+ f(xn)

n
,

for n = 2m.

Solution. Let us show it holds for n = 2m first. Use induction on m. When m = 1,
done by assumption. Assuming it holds at m, we show it for m+ 1. For x1, · · · , x2m+1 , we
have

x1 + · · ·+ x2m+1

2m+1
=

1

2

x1 + · · ·+ x2m

2m
+

1

2

x2m+1 + · · ·+ x2m+1

2m
.

Therefore, first by assumption and then by induction hypothesis

f

(
x1 + · · ·+ x2m+1

2m+1

)
≤ 1

2
f

(
x1 + · · ·+ x2m

2m

)
+

1

2
f

(
x2m+1 + · · ·+ x2m+1

2m

)
≤ 1

2

(
f(x1) + · · ·+ f(x2m)

2m
+
f(x2m+1) · · ·+ f(x2m+1)

2m

)
=

f(x1) + · · ·+ f(x2m+1)

2m+1
.

After we have proved the inequality for 2m, we “collapse” it by taking x = x1 = · · · = xn
and y = xn+1 = · · · = x2m to get

f
( n

2m
x+

(
1− n

2m

)
y
)
≤ n

2m
f(x) +

(
1− n

2m

)
f(y) ,

so the inequality holds for all λ of the form n/2m, 0 ≤ n ≤ 2m . Since every λ ∈ (0, 1) can
be approximated by such rational numbers, by the continuity of f we have

f(λx+ (1− λ)y) ≤ λf(x) + (1− λ)f(y) ,

so f is convex.

We point out that there exist discontinuous functions satisfying this “mean convex prop-
erty” but is not convex. Google for it in case you are interested in such pathological
example.
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6. Let f be differentiable on [a, b]. Show that it is convex if and only if

f(y)− f(x) ≥ f ′(x)(y − x), ∀x, y ∈ [a, b].

What is the geometric meaning of this inequality?

Solution. Suppose f is convex, then by Theorem 1.5 of Notes 1, we have f ′ is increasing
function. Let x 6= y ∈ [a, b]. By Mean-Value Theorem, ∃ξ in between x and y such that

f(y)− f(x) = f ′(ξ)(y − x).

Hence

f(y)− f(x)

y − x
= f ′(ξ) =

{
≥ f(x), if x < y.
≤ f(x), if x > y.

Suppose f(y) − f(x) ≥ f ′(x)(y − x), ∀x, y ∈ [a, b]. We attempt to show that f ′ is
increasing. Let y > x, by our assumption, we have

f(y)− f(x) ≥ f ′(x)(y − x)

and
f(x)− f(y) ≥ f ′(y)(x− y)

which imply

f ′(y) ≥ f(x)− f(y)

x− y
=
f(y)− f(x)

y − x
≥ f ′(x).

Therefore, f ′ is increasing. Again by Theorem 1.5 of Notes 1, f is convex on [a, b].

The geometric meaning is, a differentiable function is convex if and only if its tangent line
at any point always lies below the graph of the function.

7. Establish the following two inequalities

(a)

sinx+ sin y + sin z ≤ 3
√

3

2
.

(b)

sinx sin y sin z ≤ 3
√

3

8
.

(c)
1

3

(
1

sinx
+

1

sin y
+

1

sin z

)
≥ 2√

3
.

Here x, y, z are the three interior angles of a triangle.

Solution.

(a) The sine function is concave on [0, π]. Therefore,

sin
π

3
= sin

x+ y + z

3
≥ sinx+ sin y + sin z

3
,

implies the first inequality.
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(b) Next, the function log sinx is concave everywhere (actually its second derivative is
equal to −1/ sinx2 < 0.) Therefore,

log sinx+ log sin y + log sin z

3
≤ log sin

(
x+ y + z

3

)
= log sin

π

3
,

implies the second inequality.

(c) Use the concavity of the function 1/ sinx.

Since these functions are strictly concave, the inequality signs are strict unless x = y = z.
Using x + y + z = π, conclude that equality signs hold in these three inequalities if and
only if x = y = z = π/3, that is, for an equilateral triangle.

8. Establish the inequality

aabbcc ≥
(
a+ b+ c

3

)a+b+c

, a, b, c > 0 .

Hint: Use of one the functions in (1).

Solution. Take log of both sides and apply Jensen’s Inequality to x log x.


